[1] Paul Fleuchaus, Bas Godschalk, Ingrid Stober, Philipp Blum,
Worldwide application of aquifer thermal energy storage – A review [2018] https://doi.org/10.1016/j.rser.2018.06.057
[2] Bonte, M. (2015). Impacts of shallow geothermal energy on groundwater quality. Iwa Publishing. http://www.hydrology-amsterdam.nl/personalpages/PhDs/Bonte_PhD_thesis_2013.pdf
[3] Bonte, M., Mesman, G., Kools, S., Meerkerk, M., Schriks, M., & Kooiman, J. W. (2013). Effecten en risico's van gesloten bodemenergiesystemen (Vol. 613). KWR. https://library.wur.nl/WebQuery/hydrotheek/2193377
[4] BRL SIKB 11000 - Beoordelingsrichtlijn Ontwerp, realisatie, beheer en onderhoud ondergronds deel van bodemenergiesystemen - https://www.sikb.nl/doc/BRL11000/BRL_SIKB_11000_v3_0_20190620_ovgt_tot_20210701.pdf
[5] Bonte, M., Van Breukelen, B. M., & Stuyfzand, P. J. (2013). Environmental impacts of aquifer thermal energy storage investigated by field and laboratory experiments. Journal of water and climate change, 4(2), 77-89. https://iwaponline.com/jwcc/article-abstract/4/2/77/3623/Environmental-impacts-of-aquifer-thermal-energy
[6] Zuurbier, K. G., Hartog, N., Valstar, J., Post, V. E., & van Breukelen, B. M. (2013). The impact of low-temperature seasonal aquifer thermal energy storage (SATES) systems on chlorinated solvent contaminated groundwater: modeling of spreading and degradation. Journal of contaminant hydrology, 147, 1-13. https://www.sciencedirect.com/science/article/abs/pii/S0169772213000144
[7] Ni, Z., van Gaans, P., Smit, M., Rijnaarts, H., & Grotenhuis, T. (2015). Biodegradation of cis-1, 2-dichloroethene in simulated underground thermal energy storage systems. Environmental Science & Technology, 49(22), 13519-13527. https://pubs.acs.org/doi/abs/10.1021/acs.est.5b03068
[8] Bonte, M., van Breukelen, B. M., & Stuyfzand, P. J. (2013). Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Research, 47(14), 5088-5100. https://www.sciencedirect.com/science/article/abs/pii/S004313541300479X
[9] Bonte, M., Stuyfzand, P. J., & Breukelen, B. M. V. (2014). Reactive transport modeling of thermal column experiments to investigate the impacts of aquifer thermal energy storage on groundwater quality. Environmental science & technology, 48(20), 12099-12107. https://pubs.acs.org/doi/abs/10.1021/es502477m
[10] Lüders, K., Dahmke, A., Fiedler, M., & Köber, R. (2020). Temperature influence on mobilisation and (re) fixation of trace elements and heavy metals in column tests with aquifer sediments from 10 to 70° C. Water research, 169, 115266. https://www.sciencedirect.com/science/article/abs/pii/S0043135419310401
[11] Indieningsvereisten vergunning bodemenergiesystemen – Kenniscentrum InfoMil https://www.infomil.nl/onderwerpen/lucht-water/handboek-water/activiteiten/grondwater-ander/bodemenergiesystemen/indieningsvereisten/
[12] Effectenstudie Technopolis 1 te Delft –met kenmerk: 56156/LL/20210721 d.d. 21 juli 2021 – IF Technology BV .
[13] Schout, G. , Hartog, N. (2020) Effecten van hoge temperatuur warmteopslag op grondwaterkwaliteit. WINDOW fase 1 https://www.warmingup.info/documenten/window-fase-1---c3---effecten-van-hoge-temperatuur-warmteopslag-op-grondwaterkwaliteit.pdf
©De tekst is beschikbaar onder de licentie Creative Commons
Naamsvermelding-NietCommercieel-GelijkDelen 4.0 Internationaal, er kunnen aanvullende voorwaarden van
toepassing zijn. Zie de gebruiksvoorwaarden voor meer informatie.